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Abstract. Using the Monte Carlo simulation method for bosonic reaction-diffusion systems introduced
recently [S.-C. Park, Phys. Rev. E 72, 036111 (2005)], one dimensional bosonic models are studied and
compared to the corresponding Langevin equations derived from the coherent state path integral formal-
ism. For the single species annihilation model, the exact asymptotic form of the correlation functions is
conjectured and the full equivalence of the (discrete variable) master equation and the (continuous variable)
Langevin equation is confirmed numerically. We also investigate the cyclically coupled model of bosons
which is related to the pair contact process with diffusion (PCPD). From the path integral formalism,
Langevin equations which are expected to describe the critical behavior of the PCPD are derived and
compared to the Monte Carlo simulations of the discrete model.

PACS. 64.60.Ht Dynamic critical phenomena – 05.10.Ln Monte Carlo methods – 89.75.Da Systems
obeying scaling laws

1 Introduction

The reaction-diffusion (RD) systems have played a
paradigmatic role in studying certain physical, chemical,
and biological systems [1]. In the study of the RD systems
on a lattice via Monte Carlo (MC) simulations, particles
are usually assigned hard core exclusion property. On the
other hand, the renormalization group (RG) calculations
which have been successfully applied to several RD sys-
tems are often performed with boson systems [2–4]. Hence,
the comparison of the numerical studies with the RG cal-
culations can sometimes become a nontrivial issue.

There are two ways to bridge this gap between numer-
ical and analytical studies. One is to make a path integral
formula for hard core particles which is suitable for the
RG calculations. This path has indeed been sought and
some formalisms are suggested [5–7]. The other is to find
a numerical method that would simulate boson systems.
In this context, numerical integration studies of equiva-
lent Langevin equations to the boson systems have been
performed, too [8–11]. However, it is not always possible
to find an equivalent Langevin equation [12] and hence
the applicability of this approach is somewhat restricted.
Therefore, another numerical method is called for.

Recently, a general algorithm to simulate the bosonic
RD systems was proposed [13]. Section 2 is devoted to a
heuristic explanation of this algorithm to simulate gen-
eral bosonic RD systems. In Section 3, the numerical
method is applied to two bosonic RD systems. First,
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the single species annihilation model is studied with the
emphasis on the pair correlation functions. We conjec-
ture an exact asymptotic behavior of these quantities.
We then present the numerical comparison of the discrete
model to Langevin equation of continuous variables. Then,
the cyclically coupled model of bosons is introduced and
Langevin equations for this model with/without bias are
derived from the well-trodden path integral formalism and
compared to MC simulations. Section 4 summarizes the
work.

2 Algorithm

This section explains the method proposed in refer-
ence [13] that is suitable for MC simulations of bosonic
RD systems. After describing how single species boson
systems can be simulated, a brief remark regarding the
generalization to multiple species will be followed.

The reaction dynamics of diffusing bosons is repre-
sented as

nA
λnm−→ (n + m)A, (1)

where n ≥ 0, m ≥ −n (m �= 0), and λnm is the transition
rate. Each particle diffuses with rate D on a d dimensional
hypercubic lattice. The periodic boundary conditions are
always assumed, but other boundary conditions do not
limit the validity of the algorithm below. Configurations
are specified by the occupation number ρx (≥ 0) at each
lattice point x. A configuration is denoted as {ρ} which
means {ρx|x ∈ Ld}, where Ld stands for the set of lattice
points and the cardinality of Ld is Ld.
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The master equation which describes stochastic pro-
cesses modeled by equation (1) takes the form [12,14]

∂P

∂t
= D

∑

〈x,y〉

(
(ρx + 1)Êx,y − ρx

)
P

+
∑

n,m

λnm

∑

x

(
f(ρx − m, n)Ĉx,m − f(ρx, n)

)
P, (2)

where P = P ({ρ}, t) is the probability with which the con-
figuration of the system is {ρ} at time t, 〈x,y〉 means the
nearest neighbor pair (x,y ∈ Ld), f(ρx, n) = (ρx!)/(ρx −
n)! is the number of ordered n-tuples at site x of the con-
figuration {ρ}, and Êx,y and Ĉx,m are operators affecting
P ({ρ}, t) such that

Êx,yP = P ({· · · , ρx + 1, ρy − 1, · · · }; t),
Ĉx,mP = P ({· · · , ρx − m, · · · }; t). (3)

The master equation implies that the average number of
transition events for the configuration {ρ} during infinites-
imal time interval dt is

E(dt, {ρ}) = dt
∑

x,n

(
2dDδn,1 +

∑

m

λnm

)
f(ρx, n)

= dt
∑

x,n

(
2dDδn,1 +

∑

m

n!λnm

)
g(ρx, n),

(4)

where g(ρx, n) = f(ρx, n)/n! =
(
ρx

n

)
is the number of

(nonordered) n-tuples at site x. The first line of equa-
tion (4) follows the usual convention in the field theoretical
study of boson systems and the second line is introduced
to save memories in actual simulations. For a later pur-
pose, we introduce a model dependent function h(ρx, n) =
εng(ρx, n), where εn takes 1 (0) if Dδn,1 +

∑
m λn,m is

nonzero (zero). The meaning of εn is straightforward; we
have only to consider the dynamics with nonzero transi-
tion rate.

The algorithm starts by selecting one of n-tuples at
any site, randomly. The simplest way to implement the
selection is as follows: first a site x is picked up with prob-
ability Nx/M , where Nx =

∑
nh(ρx, n) is the number

of accessible states (NAS) at site x and M =
∑

x Nx

is the total number of accessible states (TNAS). Then,
n is chosen with probability h(ρx, n)/Nx. In this proce-
dure, the array of the number of particles at all sites, say
ρ[ ] (ρ[x] = ρx), is necessary. However, it is not efficient
as there are too many floating number calculations. For
a faster performance we introduce two more arrays, say
list[ ] and act[ ][ ]. The array list[ ] refers to the location of
any n-tuple. Each element of list[ ] takes the form (x, �),
where x is a site index and � lies between 1 and the NAS
at site x. From � and the array ρ[ ], which n-tuple is re-
ferred to by the array list[ ] is determined. If � ≤ h(ρx, 0),
then n = 0 is implied. Else if � ≤ h(ρx, 0)+h(ρx, 1), n = 1
is meant. Else if � ≤ h(ρx, 0) + h(ρx, 1) + h(ρx, 2), � indi-
cates one of pairs at site x, and so on. In case the TNAS

in the system is M , the size of list[ ] is M and all ele-
ments of list[ ] should satisfy that list[p] �= list[q] if p �= q
(1 ≤ p, q ≤ M). Hence, the random selection of an inte-
ger between 1 and M is equivalent to choosing one of all
n-tuples with an equal probability. The array act is the
inverse of the list. In other words, list[s] = (x, �) corre-
sponds to act[x][�] = s. It is clear that these two selecting
mechanisms are equivalent in the statistical sense.

After choosing x and n, the reaction nA → (n + m)A
occurs with probability n!λnm∆t for all m, where ∆t is a
configuration independent time difference. Provided n = 1
is selected, a particle at x hops to one of the nearest neigh-
bors with probability D∆t. To make the transition prob-
ability meaningful, ∆t is made to satisfy

(
2dDδn,1 +

∑

m

n!λn,m

)
∆t ≤ 1, (5)

for all n. After this update, time increases by ∆t/M . On
average, this algorithm generates E(∆t, {ρ}) transition
events during ∆t.

For systems with k species, all we have to do is to
modify the NAS at site x in such a way that

Nx =
k∑

i=1

∑

n

hi(ρi,x, n)

+
∑

n1,...,nk

h1,...,k(ρ1,x, . . . , ρk,x; n1, . . . , nk), (6)

where the first (second) terms are from the dynamics
in which n particles of same species (nj particles of
each jth species) are involved. For instance, for the pair
annihilation of different species, so-called A+B → 0 reac-
tion, the second term of equation (6) becomes ρA,xρB,x.
Except this modification, all other steps are the same as
in the single species case.

Equipped with the numerical methods, Section 3 stud-
ies some bosonic RD systems which show scaling behavior.

3 Applications

3.1 Single species annihilation model

The first example is the one dimensional single species
annihilation model which corresponds to λnm = 0 unless
n = 2 and m = −2. For convenience, we set D = 1

2 and
λ2,−2 = λ. The decaying behavior of the particle density
was studied in reference [13]. This section studies the cor-
relation function M(r; t) which is defined as

M(r; t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

lim
L→∞

1
L

L∑

x=1

〈ρx(t)ρx+r(t)〉 if r �= 0,

lim
L→∞

1
L

L∑

x=1

〈ρx(t)(ρx(t) − 1)〉 if r = 0,

(7)
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Fig. 1. Semi-log plots of M(r; t)/Mas(r; t) as a function of t for (a) λ = 1 and (b) λ = 1
2
. All curves converge to 1 as t goes to

infinity.

where 〈. . .〉 means the average over all independent re-
alizations. Using the boson operators in references [2–4],
M(r; t) can be rewritten as 1

L

∑
x〈axax+r〉.

The correlation functions for the annihilation model
of hard core particles with annihilation probability p were
studied in reference [15]. The asymptotic behavior of the
correlation function is conjectured as [15]

Mr(t) =
1

(4πt)3/2

(
πr + c

1 − p

p

)
, (8)

with c = 3.4 ± 0.2. Note that Mr(t) is not to be confused
with M(r; t); Mr(t) and M(r; t) are defined in the hard
core and boson models, respectively.

In fact, the exact value of c can be deduced from the
differential equation

dρ(t)
dt

= −2pM1(t), (9)

which relates the time derivative of the density ρ(t) to the
correlation function with r = 1. Since ρ(t) ∼ 1/

√
4πt for

any finite p in the asymptotic regime, it is easy to deduce
that c = π if the asymptotic behavior of the correlation
function takes the form of equation (8). This value is com-
patible with the numerical estimation in reference [15].

By the same token, we can conjecture how the corre-
lation function M(r; t) behaves asymptotically from the
equation

dρ(t)
dt

= −2λM(0; t). (10)

If M(r; t) takes the similar form to equation (8) and
since ρ(t) decays as 1/

√
4πt in the asymptotic regime for

any nonzero value of λ [13], one can deduce

M(r; t) ∼ Mas(r; t) ≡ π

(4πt)3/2

(
r +

1
λ

)
(11)

for all r ≥ 0. As far as we are aware of, the correlation
functions of the boson annihilation model have not been
studied before. If D �= 1

2 , the correlation function can
be found by changing t �→ 2Dt and λ �→ λ/(2D). Since
the boson model with infinite λ is equivalent to the hard

core particle model with p = 1 which is exactly soluble,
equation (11) becomes exact in this limit; see equation (8).

In the following, we will check the validity of equa-
tion (11) for finite λ and nonzero r via MC simulations.
Initially, particles are distributed according to the uncor-
related Poisson distribution with average density ρ0 = 1.
During simulations, we measured M(r; t) for r = 20, 22,
24, and 26 up to t = 105. The system size is 218 and around
2.5×105 independent samples are collected for both cases
of λ = 1 and 1

2 . Figure 1 shows that M(r; t) takes the
conjectured asymptotic form (11).

The MC simulations of bosonic RD systems can con-
firm the equivalence between the (discrete) microscopic
models and (continuous) Langevin equations, if exists.
From the coherent state path integral representation of
the bosonic systems [2], Langevin equation can be derived
in case each reaction involves at most two particles. Since
the reaction of boson annihilation model requires two par-
ticles, one can write down Langevin equation which reads
(Itô interpretation is employed)

dax = dt(D∇2
xax − 2λa2

x) + i
√

2λaxdWx, (12)

where ax is a complex stochastic random variable whose
average is the mean number of particles at site x, ∇2

x is
the lattice Laplacian defined as ∇2

xf(x) = f(x+1)+f(x−
1)−2f(x), i is the imaginary number, and Wx is a Wiener
process with 〈dWxdWx′〉 = dtδx,x′ . Initially, ax takes the
value of ρ0 which is the initial density of the uncorrelated
Poisson distribution used in the MC simulation.

This equation is integrated using Euler scheme with
∆t = 2.5×10−5 and the system size of 215. In Figure 2, nu-
merical integration results for λ = 1

2 are shown with com-
parison to MC simulations. Within statistical error, these
two approaches yield the same results. Since the deviation
from the mean field solution is evident, Langevin equation
in the observation time properly appreciates the effect of
noise. Hence, we believe that Figure 2 shows the equiva-
lence of two approaches for the annihilation model. Need-
less to say, the numerical integration of Langevin equation
is a much harder job than the Monte Carlo simulation.
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Fig. 2. Plots of ρ(t) obtained from MC simulations (lines) and
numerical integrations of Langevin equation (symbols) starting
from the initial density ρ0. The broken line without symbols is
the mean field solution of equation (12).

3.2 Cyclically coupled model

The absorbing phase transition has been extensively stud-
ied as a prototype of the nonequilibrium critical phe-
nomena [16]. The RG based on the boson systems has
been applied successfully especially to the directed perco-
lation (DP) universality class. Recently, the particle num-
ber probability distribution for boson models belonging to
the DP class was studied numerically and the RG predic-
tion was confirmed again [17].

On the other hand, the pair contact process with diffu-
sion (PCPD) defies any numerical and analytical conclu-
sions to date [18]. Although the driven PCPD (DPCPD)
studied in reference [19] seems to conclude that the PCPD
forms a different universality class from the DP, recent ex-
tensive numerical study [20] revives the scenario that the
PCPD will eventually be found to belong to the DP class
with a huge corrections to scaling. Still, the universality
classification for the one dimensional PCPD is yet to be
settled unambiguously.

To make matters worse, the recent RG study shows
that the field theory starting from the single species mas-
ter equation is not viable [21], which was also anticipated
independently in reference [19]. As both works conclude,
the field theory should account for the multispecies nature
of the PCPD properly. Following this instruction, multi
component Langevin equations with real random variables
are introduced and studied in reference [22] to find a vi-
able field theory for the PCPD. We will take a slightly
different path and ask whether we can find a viable field
theory for the PCPD, in this section.

Since the PCPD involves two independent “excita-
tions” such as particles and pairs, it is natural to generalize
to a two species model which captures the main physics of
the PCPD. This type of two species model with hard core
particles was introduced and studied in reference [23]. This
section introduces a bosonic variant and studies it using
both MC simulations and Langevin equations.
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Fig. 3. Semi-log plot of R(t) vs. t for the CC with the relative
bias near criticality. At criticality (pc = 0.3751), clear logarith-
mic behavior is observed as in reference [19]. Inset: A plot of
R(t)/ ln(t) vs. t in the semi-log scales.

The model which will be called the cyclically coupled
(CC) model is defined as follows: there are two species,
say A and B. Each species diffuses with rate DA and DB,
respectively. Each B particle is annihilated (B → 0) with
rate δ, branches another B particle (B → 2B) with rate σ,
and mutates into two A particles (B → 2A) with rate µ.
Every pair of B particles at the same site can be coag-
ulated (2B → B) with rate λ. Every pair of A particles
produces a B particle and is removed (2A → B) with
rate τ . The A (B) particles have a connection, if not a ex-
act mapping, to the isolated particles (pairs) in the PCPD.

Since the PCPD as well as the CC suffers from the
strong corrections to scaling, it is nontrivial to show di-
rectly by MC simulations that the CC and the PCPD
should belong to the same universality class. Fortunately,
we have an alternative to check the equivalence of the CC
and the PCPD in the sense of the universality. If the rela-
tive bias between two species in the CC in one dimension
triggers the mean field scaling with logarithmic correc-
tions as happens in the DPCPD [19], it is reasonable to
conclude that the CC and the PCPD share the critical
behavior.

The transition events of the CC with a relative bias in
one dimension are almost same as those of the CC above
except that A particles hop only to the right with rate 1.
For a numerical study, we set DB = 0.1, µ = 0.2, τ = 0.5,
δ = 2λ = 0.6 × p, and σ = 0.6 × (1 − p) with a tun-
ing parameter p. Since only A particles diffuse in a biased
manner, the relative bias between different species can not
be gauged away by the Galilean transformation. Figure 3
shows that R(t) (= A(t)/B(t)) which is a ratio of two
densities at time t behaves logarithmically at criticality.
Combining with the observation that A(t) ∼ t−0.5 at crit-
icality with possible logarithmic corrections (not shown),
the CC with the bias shows the same critical behavior as
the DPCPD, which confirms the equivalence of the CC to
the PCPD in the sense of the universality. Accordingly,
Langevin equations which are equivalent to the CC are
supposed to describe the critical behavior of the PCPD.
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Fig. 4. (a) The densities of each species for both the biased and unbiased CC as a function of t from the MC simulations
(lines) and numerical integration (symbols) of Langevin equations (14). For comparison, mean field solutions are also shown.
(b) Close-up of the interval 6 ≤ t ≤ 10 for A(t) in (a). (c) Close-up of the same interval as in (b), but the plots are for B(t).

Following standard path integral formalism [2], one can
derive the action of the CC, which reads

L = āx[∂tax − DA∇2
xax + v∂‖ax − 2µbx + 2τa2

x]

+ b̄x[∂tbx − DB∇2
xbx − rbx + λb2

x − τa2
x]

− 1
2
b̄2
x(2σbx − 2λb2

x) − 1
2
ā2

x(2µbx − 2τa2
x),

(13)

where the average of the field ax (bx) corresponds to the
density of species A (B) at site x and r = σ − µ − δ.
Along the parallel direction denoted as ‖, A particles hop
to the right (left) with rate DA+v/2 (DA−v/2). Since the
number of barred fields does not exceed two in each term,
one can write down the equivalent Langevin equations to
the action (13), which read

dax = dt(DA∇2
xax − v∂‖ax + 2µbx − 2τa2

x)

+
√

2µbx − 2τa2
xdWx, (14a)

dbx = dt(DB∇2
xbx + rbx − λb2

x + τa2
x)

+
√

2σbx − 2λb2
xdVx, (14b)

where Wx and Vx are independent Wiener processes.
In Figure 4, we compare the MC simulations of the

CC with the numerical integrations of Langevin equa-
tions (14) at p = 0.29. Initially, ax and bx are set to 1.
The system size for the numerical integration is 215 and
around 50 samples are independently generated with ∆t =
2.5 × 10−5. Up to t = 10, the difference between the un-
biased and biased cases is minute, but, within statistical
errors, the behavior of two cases can be discerned from
each other. In other words, we showed that equations (14)
are equivalent to the CC with/without bias. Although we
compared two approaches just for one set of parameter
values, the full equivalence for all parameter values is still
expected.

In summary, we showed that the CC and the PCPD
share the critical behavior. Then, we found Langevin equa-
tions which are equivalent to the CC. From these two ob-
servation, we can say that Langevin equations (14) with

complex random variables a and b show the same critical
behavior as the PCPD.

Although we found the representative Langevin equa-
tions for the PCPD, it is not obvious whether these equa-
tions with naive continuum limit can serve as a prop-
erly coarse-grained field theory for the PCPD. Besides,
we are not sure whether equations (14) contain all rele-
vant (or sometimes dangerously irrelevant) terms. For ex-
ample, the reaction A + B → 0 which is absent in our
model can be generated by a chain of reactions. It is of
no difficulty to write down Langevin equations with the
pair annihilation of different species. However, what will
happen if we include the reaction 3A → 0 which prohibits
writing down Langevin equations like Eqs. (14)? If this
reaction is also important in whichever sense (relevant or
dangerously irrelevant), terms with only a and ā in the ac-
tion take exactly the same form as those in reference [21].
Hence, it seems that the difficulty found in reference [21]
still remains even in the multi component Langevin equa-
tions studied here. We only hope that this study can be a
starting point of the field theoretical understanding of the
PCPD in the future.

4 Summary

To summarize, using the algorithm proposed in refer-
ence [13] and generalized one to the multispecies models,
the single species annihilation and the cyclically coupled
models are studied.

For the single species annihilation model, the exact
asymptotic form of the correlation functions is conjec-
tured and numerically confirmed. In addition, the equiva-
lence of Langevin equation derived from the coherent state
path integral formalism to the discrete boson model is af-
firmed. From the cyclically coupled model of bosons, we
derive Langevin equations for both biased and unbiased
cases. By simulating discrete models and integrating the
Langevin equations numerically, these continuum equa-
tions are indirectly shown to describe the critical behavior
of the PCPD and the DPCPD.
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